Radiative Mhd Simulation of Sunspot Structure
نویسنده
چکیده
Results of a 3D MHD simulation of a sunspot with a photospheric size of about 20 Mm are presented. The simulation has been carried out with the MURaM code, which includes a realistic equation of state with partial ionization and radiative transfer along many ray directions. The simulation covers a time span of about 12 hours. The largely relaxed state of the sunspot shows a division in a central dark umbral region with bright dots and a penumbra showing bright filaments of about 3 to 4 Mm length with central dark lanes. By a process similar to the formation of umbral dots, the penumbral filaments result from magneto-convection in the form of upflow plumes, which become elongated by the presence of an inclined magnetic field: the upflow is deflected in the outward direction and bends down the magnetic field to become almost horizontal in the upper part of the plume near the level of optical depth unity. At the same time, roll-type motion leads to a flow perpendicular to the filament axis and to a downflow near its edges. Expansion and flux expulsion causes a strong reduction of the field strength in the upper part of the rising plume, where a dark lane forms owing to the piling up of matter near the cusp-shaped top and the upward bulging of the surfaces of constant optical depth. The simulated penumbral structure corresponds well to the observationally inferred interlocking-comb structure of the magnetic field with Evershed outflows along dark-laned filaments with nearly horizontal magnetic field and roll-type perpendicular motion, which are embedded in a background of stronger and less inclined field. Photospheric spectral lines are formed at the very top and somewhat above the upflow plumes, so that they do not fully sense the strong flow as well as the large field inclination and significant field strength reduction in the upper part of the plume structures. Subject headings: MHD – convection – radiative transfer – sunspots
منابع مشابه
Mhd Simulations of Penumbra Fine Structure
We present results of numerical 3D MHD simulations with radiative energy transfer of fine structure in a small sunspot of about 4 Mm width. The results show the development of filamentary structure with nearly field-free gaps, interlaced by concentrations of stronger magnetic field at the interface between the umbra and the outer field-free atmosphere. Calculated synthetic images show dark core...
متن کاملMhd Simulations of Penumbra Fine Structure
We present results of numerical 3D MHD simulations with radiative energy transfer of fine structure in a small sunspot of about 4 Mm width. The simulations show the development of filamentary structures and flow patterns that are, except for the lengths of the filaments, very similar to those observed. The filamentary structures consist of gaps with reduced field strength relative to their surr...
متن کاملMixed convection on radiative unsteady Casson ferrofluid flow due to cone with Brownian motion and thermophoresis: A numerical study
In this study, the Brownian motion and thermophoresis effects on the MHD ferrofluid flow over a cone with thermal radiation were discussed. Kerosene with the magnetic nanoparticles (Fe3O4) was considered. A set of transformed governing nonlinear coupled ordinary differential equations were solved numerically using Runge-Kutta based shooting technique. A simulation was performed by mixing ferrou...
متن کاملSimulating solar MHD
Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic ®eld and convection in a strongly strati®ed, radiating ̄uid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of...
متن کاملHelioseismology of Sunspots: Confronting Observations with Three-Dimensional MHD Simulations of Wave Propagation
The propagation of solar waves through the sunspot of AR 9787 is observed using temporal cross-correlations of SOHO/MDI Dopplergrams. We then use three-dimensional MHD numerical simulations to compute the propagation of wave packets through self-similar magneto-hydrostatic sunspot models. The simulations are set up in such a way as to allow a comparison with observed cross-covariances (except i...
متن کامل